C  A   O  S

 

 

 

 "Chaos is a name for any order that produces confusion in our minds"

"Caos è un nome per ogni condizione che produce confusione nelle nostre menti"

George Santayana

Il Caos: Un FioreIl Caos: Il GhiaccioIl Caos: Una Felce

"Una goccia d'acqua che si spande nell'acqua, le fluttuazioni delle popolazioni animali, la linea  frastagliata di una costa, i ritmi della fibrillazione cardiaca, l'evoluzione delle condizioni meteorologiche, la forma delle nubi, la grande macchia rossa di Giove, gli errori dei computer, le oscillazioni dei prezzi Sono fenomeni apparentemente assai diversi, che possono suscitare la curiosità di un bambino o impegnare per anni uno studioso, con un solo tratto in comune: per la scienza tradizionale, appartengono al regno dell'informe, dell'imprevedibile, dell'irregolare. In una parola al caos. Ma da due decenni, scienziati di diverse discipline stanno scoprendo che dietro il caos c'è in  realtà un ordine nascosto, che dà origine a fenomeni estremamente complessi a partire da regole  molto semplici."

   (J.Gleick, pioniere di una nuova scienza, Chaos)

 

 In geometria la linearità è riferita agli oggetti euclidei: i punti, le linee e i piani, ossia a tutti quegli  elementi geometrici primitivi come il triangolo, il quadrato e il cerchio che appaiono uguali,  indipendentemente dalla scala di riferimento. La teoria del caos, ovviamente, è a tutti gli effetti una scienza non lineare in quanto non si basa come del resto anche i modelli matematici e la geometria  frattale, sui postulati euclidei. In altre parole si può affermare che la linearità è riferita alla semplicità dell'ordine, mentre la non linearità alla complessità del caos. Quest'ultima ha avuto negli ultimi decenni un'applicazione nel campo della matematica, della fisica, della biologia, dell'economia, della medicina ed anche nel campo artistico in generale ed architettonico in particolare. Il fulcro su cui è basata la visione di aspetti prima trascurati, non retti da leggi note e regolati da fattori  apparentemente non prevedibili, è il fattore stocastico proprio dei sistemi dinamici complessi. Nella scienza classica, il caos era per definizione ,assenza di ordine. Oggi è considerato una dimensione retta da leggi non definibili, infatti, il concetto di disordine è inteso come complessità. 

La teoria del caos è nata quando la scienza classica non aveva più mezzi per spiegare gli aspetti  irregolari e incostanti della natura; è innanzitutto una teoria scientifica, nata su sperimentazioni  fisiche, biologiche, matematiche, socio-economiche, che ha cambiato l'aspetto del mondo e che in un secondo tempo è stata sintetizzata nelle arti espressive, facendo la sua apparizione nello studio di  fenomeni meteorologici.  Nell'affermazione di George Santayana si conferma   che il caos, questo punto, non può più essere visto come casualità e totale mancanza di ordine, ma  unicamente, come un ordine così complesso da sfuggire alla percezione e alla comprensione umana; un ordine con una logica stocastica e inestricabile dove le regole dell'antica idea di armonia platonica non  siano più riscontrabili. 

Di conseguenza, i sistemi caotici non possono più essere interpretati esclusivamente come  imprevedibili anche se irregolari E' fondamentale sottolineare che il caos non è sinonimo di caso (curiosamente suo anagramma) come la logica potrebbe indurre a pensare e non si può parlare di completo disordine, in quanto i sistemi caotici, alla luce delle nuove scoperte della teoria del caos,  sono sistemi dinamici sempre prevedibili a breve termine e, quindi, riconducibili ad una logica nuova  più o meno complessa. Si può, dunque, paradossalmente affermare, in base a precise scoperte scientifiche, che nel caos c'è ordine.

 

A dimostrazione della caoticità della nostra realtà possiamo avvalerci di due argomentazioni che, quanto mai, ci sono vicine e ci circondano ogni giorno: il numero p e la geometria frattale. 

p è un numero che in realtà non esiste, quantunque ricorra molto spesso nella geometria e nella matematica. Ad esempio nel calcolare gli angoli in radianti, gli uomini scoprirono che la misura dell'angolo piatto era uguale a p. Tale scoperta portò a dei grandi sconvolgimenti. Come poteva p , un numero trascendentale, non proveniente da nessuna equazione a coefficiente reale, ed avente un numero infinito di cifre decimali, essere la grandezza di un ente geometrico de sempre considerato finito?

L'Insieme di MandelbrotPer quanto riguarda un frattale la definizione più semplice e intuitiva lo descrive come una figura geometrica in cui un motivo identico si ripete su scala continuamente ridotta. Questo significa che ingrandendo la figura si otterranno forme ricorrenti e ad ogni ingrandimento essa rivelerà nuovi dettagli. Contrariamente a qualsiasi altra figura geometrica un frattale invece di perdere dettaglio quando è ingrandito, si arricchisce di nuovi particolari.

 

La Realtà che ci circonda, dunque, non è quella che crediamo che sia. 

 

Questo da origine alla crisi dell'uomo che ha caratterizzato tutto il XX sec. e che viviamo tuttora. 

Cimentarsi nella ricerca di una definizione esauriente dei fermenti del nostro tempo appare un'impresa quanto mai rischiosa e, sotto parecchi aspetti, sterile. 

 La storia del pensiero scientifico e filosofico contemporaneo è infatti segnata, come abbiamo visto, già a partire dalla fine del XIX secolo dalla progressiva presa di coscienza di un lento ma inesorabile dileguarsi delle certezze, dei fondamenti teorici e pratici del sapere. Uno alla volta, tutte le categorie del pensare e dell'agire scientifico e filosofico, idee e concetti ritenuti immutabili come il tempo, lo spazio, il rapporto tra  cause ed effetto, sono stati messi alla prova. 

 Assunta consapevolezza di ciò, su un piano più teorico ed intellettuale si è ritenuto che una delle  possibili linee di azione fosse, da un lato, quella di trovare nuove risposte, più adeguate al tempo che  stiamo vivendo, agli interrogativi classici della filosofia, intesa ancora come sguardo critico sul  mondo; dall'altro, si è cercato di costruire un'immagine il più possibile confortante del lavoro e delle  prospettive della scienza, la quale ha mantenuto la speranza di continuare a ricoprire il ruolo  ereditato dal tempo di Newton e Galileo, di fare illuminante dell'esistenza umana. Su un piano meno astratto, la crisi che caratterizza il nostro secolo è però una crisi di tipo esistenziale, profonda e  diffusa a livello globale; nessun aspetto della nostra vita ne è immune, a partire da questioni come la  salute, i mezzi di sussistenza, la qualità dell'ambiente e dei rapporti sociali, l'economia, la tecnologia.  Si è sviluppata insomma la coscienza di una serie impressionante di emergenze, che coinvolgono  l'umanità, a tutti i livelli in un tentativo di ricerca di nuove soluzioni. L'immagine stessa della filosofia  e della scienza ne risulta quindi modificata: il sapere ereditato dall'età moderna, per poter  sopravvivere, deve mettere in discussione uno dopo l'altro tutti i suoi fondamenti, ma soprattutto  deve scoprirsi ancora capace di calarsi nella vita reale, e rispondere alle domande sempre più pressanti che essa gli pone. 

  

L'Insieme di Julia"…Erano uomini di scienza operanti in molti campi diversi. In comune avevano la convinzione che sotto la complessità del mondo si celasse un ordine precedentemente sfuggito alla scienza, ma che sarebbe stato svelato dalla teoria del caos conosciuto adesso come teoria della complessitàI  sistemi complessi tendono a situarsi in un punto che definiremo "il margine del caos". Immaginiamo questo punto come un luogo in cui vi è sufficiente innovazione da dare vitalità al sistema, sufficiente  stabilità da impedirgli di precipitare nell’anarchia. E' una zona di conflitto e di scompiglio dove  vecchio e nuovo si scontrano in continuazione……."  

    (Michael Crichton, Il mondo perduto)

 

TORNA AL SOMMARIO